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Effects of poverty on emotional and cognitive development are
mediated by parental factors (Conger, McLIloyd, Eisenberg).
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Linver, Brooks-Gunn & Kohen Dev Psychol 2002; same model predicts child cortisol
levels (Lupien, McEwen, Meaney Biol Psychiatry 2000)
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Evolutionary biology - Maternal effects

Environmental Parental Developmental
signal mediation outcome
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Robert Hinde: Evolution has shaped the young to use parental
signals as a ‘forecast’ of the quality of the environment
iInto which they have been born. For most species, there is
no single, optimal phenotype.



Evolutionary Biology: Maternal Effects
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Defense to snake predation in skink lizards

Most frequent prey

e smaller

e shorter tails

e less reactive to
shake cues

If mother has been exposed to the scent of a
predatory snake then offspring are larger, with
longer tails and ....



Response to snake odours

Offspring

are significantly
larger and with
longer tails
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Control Perfume Snake



Inducible defenses
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Scanning electron micrograph showing typical and predator-induced morphs of Daphnia cucullata of the same clone.



Relative helmet size

Agrawal et al. Nature 1999
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Robert Hinde: Evolution has shaped the young to use parental
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iInto which they have been born. For most species, there is
no single, optimal phenotype.






/ Summary \

» Parental care affects the activity of
genes in the brain that regulate stress
responses, neural development and
reproduction.

 This parental effect involves a form

\\ a “plasticity” at the level of the DNA. /

Epigenetics: Any functional change in the genome that
does not involve an alteration of DNA sequence.



Multiple phenotypes from a common genotype
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Creating diversity in phenotype from a common genome



Genetic code is defined by the sequence of four nucleotides that
produce proteins and other molecules that serve cell function.

| CTACGTACTCGGAATCTCG |

}

Protein

Epigenetic effects refer to modifications of the chemistry of the DNA,
but not to a change of sequence. Epigenetics alters the activity of the
gene, but not its function.
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Incomprehensible scientific jargon
will follow...
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chemistry of the DNA, but not to a change of sequence.
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« DNA methylation: The addition of a methyl group onto a cytosine.

« DNA methylation is chemically very stable (potentially lasting for
the life of the organism).

 DNA methylation silences gene expression.



nucleosome core particle

Prevents TF
binding to DNA

TF binding involves
alteration of
chromatin structure

Nucleosome core particle: ribbon traces for the 146-bp DNA phosphodiester backbones
(brown and turquoise) and eight histone protein chains (Luger et al. Nature 1997).



Acetyl group

B. Turner. Chromatin structure and gene regulation. 2001



Genetic code is defined by the sequence of four nucleotides that
produce proteins and other molecules that serve cell function.
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RNAs, proteins

Epigenetic effects refer to modifications of the chemistry of the DNA,
but not to a change of sequence. Epigenetics alters the activity of the
gene, but not its function.
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DNA Methylation can inhibit gene expression
by blocking transcription factors binding

@ Methylated DNA
binding protein
CH)

HDAC: Histone

deacetylase




B. Turner. Chromatin structure and gene regulation. 2001



Parental care — Epigenetic mark —>Gene expressidthendtype



Naturally-occurring
variations in maternal care

Expression of specific genes
in brain regions
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Stable individual differences
in stress reactivity




Maternal licking/grooming

/
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Source of tactile stimulation/nurturance: Enhances
activity of endocrine systems (e.g., GH/IGF) that
promote somatic growth, suppresses those
(glucocorticoids) that inhibit growth

\
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Licking/grooming

Variations in maternal care X Days
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Are these naturally-occurring variations
In maternal behaviour associated with
the development of individual differences
In endocrine and behavioural responses
to stress?

* Effects hold for both males and females

Maternal care Outcomes

fetal postnatal peripubertal adulthood
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» Control of the Secretion of Glucocorticoids by the Adrenal Cortex and of
Catecholamines by the Adrenal Medulla
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CREF: corticotropin releasing factor. ACTH: adrenocorticotropin



Individual differences in glucocorticoid receptor
levels lead to altered pituitary-adrenal responses
to stress

Hippocampus Hippocampus

FR o &R

Hypothalamus Hypothalamus
cRF CRF §
Pituitary Pituitary
ACTH I ACTH I
Adrenals Adrenals 1 Glucocorticoids

= Glucocorticoids



Individual differences in glucocorticoid receptor
levels lead to altered pituitary-adrenal responses
to stress

High LG offspring Low LG offspring
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Adult offspring of High LG mothers show
more modest HPA responses to stress
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Intra-hippocampal infusion of a GR antagonist completely
eliminates the maternal effect on HPA responses to stress



Individual differences in glucocorticoid receptor
levels lead to altered pituitary-adrenal responses
to stress
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Adaptive advantages of increased stress reactivity
(Central CRF systems, HPA axis, Catechols)

 Increased resistance to sepsis (infection).
* Increased resistance to famine.
» Decreased mortality due to aggressive conflict.

Poverty: Pathogens, nutritional deprivation and violence



Individual differences in glucocorticoid receptor
levels lead to altered pituitary-adrenal responses
to stress
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Cross-fostering reveals evidence for direct, postnatal
effects of maternal care

High LG offspring € Low LG offspring
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How might maternal licking/grooming
regulate hippocampal glucocorticoid
receptor gene activity and HPA function?

And how do
these effects persist over the lifespan
of the offspring?



Relevant gene - environment interaction
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Summary of in vivo and In vitro studies
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(maternal LG) St o
(T3) iy

Transcription

Factor




250 r @ 5.HT
200 |
150 I
100 [
50 o

0 1 1 1 ]
77 1657 30750

Days in Culture

GR levels

=== Represents period of 5-HT exposure



Day 6 pups

Low LG High LG

S-HT

1 5-HT, rec

NGFI-A mRNA levels
1= Of

1.0

*
0.5T .
0.0-

NGFI-A mRNA (stroking)
0.9r

0.6 [
0.3 I
0.0t

R/S R/C




In vitro (primary hippocampal neuronal cultures) studies
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Weaver et al., 2006



S-HT

l 5-HT, rec

What are the relevant
genomic targets?

Clone the 5’ untranslated
region of the rat hippocampal
glucocorticoid receptor gene



Gene organization
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Non-coding, regulatory Coding region
region (contains enhancers, responsible for protein
repressors, etc.). synthesis.



Glucocorticoid receptor gene

Variable exon 1 region Constant region
i 243 456 78 9101112 2 345678 9
s HH—HHHHHE—HHiHE
(~110 kb)

Clone the 5’ untranslated region of the rat
hippocampal glucocorticoid receptor gene



Variable exon 1 region Constant region

456 78 9101112 2 345678 9
Crltlcal for
Hippocampal
GR

Transfection studies with promoter-reporter constructs reveal exon 1,
sequence has considerable transactivational capacity.

(McCormick et al. Mol Endo 2000)



DNA sites that regulate glucocorticoid receptor gene
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NGFI-A




NGFI-A binding to the GR(1,;) promoter
In neonates
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Offspring of High LG mothers

Exon 1 (Noncoding region)
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Offspring of High LG mothers
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NGFI-A levels

Adult

Pup
10 B 10 ra
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So, while increased levels of NGFI-A can explain the
increased activity of the glucocorticoid receptor gene
in the pup, it does not explain why the difference is still
observed in adult animals?



Offspring of High LG mothers

Exon 1 (Nencading region) Exons 2- 9 Coding region

i 3’
Stable modification
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Glucocorticoid receptor mRNA

Glucocorticoid receptor protein
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 DNA methylation occurs at cytosines.
 DNA methylation is chemically very stable.



DNA Methylation can inhibit gene expression
by blocking transcription factors binding

@ Methylated DNA
binding protein
CH)

@ HDAC: Histone
% @ deacetylase



DNA methylation silences gene expression




DNA sites that regulate glucocorticoid receptor gene
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NGFI-A binding to ....

[5’...TGCGGGGGCGGGG ...... 3

(no methylation)

CHy)

(HighLG) | 5. TGCGGGGGCGGGG.....3

(methylated only at 3’; High LG)

| 5. TGCGGGGGCGGGG......3

(methylated only at 5’)

(LowlG) | 5.TGCGGGGGCGGGG...... 3

(methylated at both 5" and 3’; Low LG)



But....
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So while levels of NGFI-A are similar in animals reared
by High or Low licking/grooming mothers, the NGFI-A
site in the adult offspring of Low LG mothers is methylated
and therefore cannot interact with NGFI-A.
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Do these ‘maternal’ signals alter the methylation
of the exon 17 GR promoter?

(H-P-T)
—p 5-HT
(T3) -

Tactile stimulation
(maternal LG)




Do comparable processes occur in humans?

e Post-mortem studies of hippocampus.
« Samples from suicide victims/controls.

 QSBB (Gustavo Turecki) - forensic
phenotyping.

e Human exon 1F promoter (Turner &
Muller, J Molec Endo, 2005)



Hippocampal samples from humans

® Human brain bank (suicide victims vs controls).

e All suicide victims (and none of the controls)
experienced verified abuse in childhood.



Human glucocorticoid receptor gene

Variable exon 1 region Constant region

A B CDE FGH 345678 9
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Human glucocorticoid receptor gene

Variable exon 1 region Constant region
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McGowan et al. PlosOne 2008, Nature Neuroscience 2009



Suicide vs abuse - GR expression
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McGowan et al. PlosOne 2008, Nature Neuroscience 2009



Suicide vs abuse - CpG methylation
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McGowan et al. PlosOne 2008, Nature Neuroscience 2009



Co-transfection studies (NGFI-A vector w/
human GR exon 1F-luciferase construct)

B Control B NGFI-A expression
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Luciferase activity

McGowan et al. PlosOne 2008, Nature Neuroscience 2009



DNA methylation serves to imprint social factors,
such as maternal behavior, upon the offspring’s genome.

nucleosome core particle

ﬁ
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| CTACGTACTCGGAATCTCG |

DNA methylation serves as an interface between
the dynamic environment and the fixed genome
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